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Abstract
Background: Photon-counting detector CT (PCD-CT) is a new CT technol-
ogy that offers enhanced spatial and spectral imaging performances. As a new
technology,conditioning and qualifying its precise performance can benefit from
a comprehensive framework to evaluate task-generic and task-specific image
qualities.
Purpose: To develop and validate a customizable and physics-informed sim-
ulation framework capable of modeling spatio-energetic detector responses
for various PCD designs, integrate it into a virtual imaging framework, and
demonstrate its applicability in clinically relevant imaging tasks.
Methods: A customizable simulation model, DukeCounter, was developed to
replicate real PCD-CT systems. Photon transport and crosstalk in PCDs were
modeled using Monte Carlo simulations, and charge sharing was implemented
using an analytical Gaussian charge cloud model. The fundamental interac-
tions in PCDs, including photoelectric absorption, Compton and fluorescence
x-ray scatterings, charge cloud formation, and charge diffusion and repulsion,
were modeled.Spatio-energetic detector responses were generated for face-on
CdTe-, CZT-, GaAs-, and edge-on Si-based PCDs. These responses, combined
with standardized scanner parameters, were integrated into a CT simulator
to create virtual DukeCounter PCD-CT scanners. The framework was bench-
marked against experimental data from a clinical CdTe-based PCD-CT scanner
across three dose levels. To demonstrate its utility, three pilot studies were
conducted using a computational ACR phantom for task-generic image qual-
ity assessment, an XCAT model with bronchitis and emphysema for COPD
biomarker extraction, and an XCAT with liver lesions for lesion detectability
analysis.
Results: The simulated charge cloud size increased with energy and was
more pronounced in Si due to its low atomic number. The detector response
across a 3 × 3-pixel neighborhood varied with PCD material,design,and energy
threshold settings. Validation results demonstrated strong agreement between
simulated and real ACR images.For the 20-keV-threshold images, the mean rel-
ative difference (MRD) in f50 of MTF was 4.15% ± 1.21 for air and 2.54% ± 2.08
for bone, and the MRD in fav of NPS was 0.83% ± 0.97. The MRDs in noise
magnitude were 2.65% ± 1.68,3.05% ± 1.97,and 2.78% ± 1.79 for the 20-keV-
threshold, 65-keV-threshold, and 70-keV-VMI images, respectively. The MRDs
in CT number for the same image types were 0.03% ± 0.03, 0.11% ± 0.09,
0.11% ± 0.05 for air, and 1.85% ± 0.20, 1.84% ± 0.55, 0.50% ± 0.36 for
polyethylene. DukeCounter-generated images showed that task-generic and
task-specific image qualities were influenced by PCD materials, designs, and
energy threshold settings. GaAs-based DukeCounter exhibited the highest
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image noise, the largest error in COPD biomarker quantification, and the low-
est performance in liver lesion detection, under consistent acquisition and
reconstruction settings.
Conclusions: A customizable, modular simulation framework was developed
to model spatio-energetic detector responses for various PCD materials and
designs.The detector responses were integrated into a CT simulation pipeline to
build DukeCounter PCD-CT systems.The framework’s utility was demonstrated
through task-specific assessments of image quality and clinical performance
of DukeCounter systems using XCAT phantoms. This approach enables sys-
tematic PCD-CT design evaluation and optimization, supporting translational
research in medical imaging by reducing the cost, time, and radiation burden of
physical experiments.

KEYWORDS
CT simulation, photon counting detector CT, spatio-energetic detector response

1 INTRODUCTION

Photon-counting detector computed tomography (PCD-
CT) is an expanding spectral CT technology that
utilizes semiconductor-based photon-counting detec-
tors (PCDs). PCDs measure the energy of individ-
ual photons and assign them to different energy
bins. This feature enhances PCD-CT image quality
by eliminating electronic noise, offering higher image
contrast, and enabling multi-energy material decompo-
sition capabilities.1,2 Despite these advantages, PCDs
are subject to signal degradation processes such
as crosstalk and pulse pileup. Crosstalk occurs due
to the emission and reabsorption of x-ray photons
between detector pixels, attributed to Compton- and x-
ray fluorescence-scatterings, along with charge sharing
induced by the spread of charge cloud across multiple
detector pixels. Pulse pileup occurs due to the limited
readout speed of the electronics, leading to accumu-
lation of simultaneous pulses.2 These non-idealities in
PCDs affect overall PCD-CT image quality; however, the
existence of clinically-approved and experimental pro-
totype scanners suggests that their deteriorating effects
can be mitigated.3

As new PCD-CT systems seek clinical approvals
and as vendors work on building new prototypes, it is
important to develop a framework that can compre-
hend and characterize the performance of PCD-CT
systems based on both task-generic and task-specific
image qualities. Such studies with physical scanners
and phantoms are costly and time-consuming. While
physical phantoms with anthropomorphic features do
exist, they are often limited in numbers and cannot
fully capture the anatomical variability and population
heterogeneity needed for comprehensive task-specific
image quality characterization. Another approach is to
utilize human subjects; however, such studies are not
only costly, time-inefficient, and ground-truth limited, but
also involve experimental radiation exposure and fur-

ther are not possible for new prototypes. Furthermore,
the physical characteristics of PCDs and the geo-
metrical specifications of PCD-CT scanners are often
safeguarded as proprietary information, making it chal-
lenging to systematically study PCD-CT image quality.
A viable approach to address these challenges is to
utilize a virtual or in-silico imaging framework using real-
istic and customizable models to simulate the physics of
signal generation in PCDs and the physics of imaging
acquisition across a diverse set of computational human
models.4

Prior studies have modeled signal detection pro-
cesses across various PCD materials and designs
using cascaded parallel, analytical, and Monte Carlo
approaches.5–12 Despite providing valuable insights,
these studies do not provide a generalizable model
for simulating diverse PCD designs and materials and
often have limited validations against physical measure-
ments. One study presents a framework for modeling
charge sharing and pulse pileup in CdTe-based PCDs;
however, it lacks validation of the CT image generation
pipeline and does not account for initial charge cloud
size.13 Other studies have successfully presented vali-
dated simulations of clinical and experimental PCD-CT
prototypes but have not explored image quality across
PCD-CT scanners.14,15 As informative as these studies
are, there remains a gap in developing a customizable
platform that integrates realistic modeling of various
PCD designs with an efficient CT image generation
framework, comprehensively validated against a clinical
PCD-CT scanner.

Our previous work on in-silico simulations focused
on developing and advancing CT simulator and digital
phantoms but lacked a validated tool for generat-
ing spatio-energetic detector responses for different
PCDs.14,16–20 The purpose of this study was to develop
a customizable detector model that parameterized the
signal-generation process for diverse PCD materials
and designs and integrate it into an in-silico imaging
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F IGURE 1 A simulation framework of DukeCounter.

framework to enable systematic modeling and charac-
terization of PCD-CT under various detector specifi-
cations and energy settings. This framework enables
evaluation and optimization of PCD-CT technologies
not only in developmental and pre-clinical stages but
also in the clinical stage by defining protocols expected
to offer task-specific clinical value.

2 METHODS

The framework of this study is illustrated in Figure 1 and
further explained in the subsections below. In summary,
the framework involved utilizing Monte Carlo to simulate
the quantum detection efficiency of a PCD by model-
ing photon transport and crosstalk due to Compton and
fluorescence scatterings, further blurring it with charge
sharing,defining standard CT components,and integrat-
ing them into an imaging framework acquainted with a
CT simulator, computational phantom or human models,
and an image reconstruction tool.

2.1 Detector response

In this study, detector response refers to the spatio-
energetic point spread function, representing the dis-
tribution of photon counts across the central and
neighboring pixels when a photon of a given energy
is incident on the central pixel. Detector response was
characterized for all energy threshold settings, where a
photon with energy E was registered in energy thresh-
old Ti if an energy E ≥ Ti was absorbed in the detector.
It included both spatio-energetic mean and covariance
matrices across all combinations of detector pixels
and energy thresholds. We utilized Monte Carlo sim-
ulation to model the stochastic interaction of x-ray
photons with the detector and added an analytical Gaus-
sian charge cloud-based model to incorporate charge
sharing effect.21,22

2.1.1 Monte Carlo modeling of photon
transport

A Monte Carlo (MC) simulation was built in Geant4
(v10.6), a C++ based toolkit, with Livermore physics
list. The Livermore physics list modeled the relevant
interactions (photoelectric absorption, Compton and
Rayleigh scattering, fluorescence, Bremsstrahlung, ion-
ization) between x-ray photons and the semiconductor-
based detector material in the diagnostic energy range.
Photon step-length cutoffs were set at 0.01 mm in the
detector bulk (or wafer) and 0.001 mm in the inter-wafer
high-Z foil.

The simulation featured a large 100 × 100-pixel array
along the x-y plane to avoid the boundary effects. A
point monoenergetic source with energies ranging from
1 to 120 keV was used to irradiate 104 photons per-
pendicularly onto each location of a 10 × 10 grid of
equally spaced points within the central detector pixel for
both face-on and edge-on detector designs (Figure 2).
This approach ensured a uniform mapping of photon
hits across the entire central pixel. The (x, y, z) coordi-
nates and energy of interactions that resulted in energy
deposition were logged.

2.1.2 Charge sharing simulation

An analytical charge sharing model was developed in
MATLAB (v R2024a).We formed a 2D Gaussian charge
cloud at each interaction location derived from the MC
simulation. We assumed the energy shared between
pixels due to charge sharing to be proportional to the
area of the charge cloud projected on those pixels.9

The electric field direction was along the z-axis for the
face-on detector design and along the y-axis for the
edge-on design. Because of the high-Z inter-wafer bar-
rier (Figure 2), charge sharing could only occur in the
x-direction for the edge-on PCD design, while it could
occur in both x- and y-directions for the face-on PCD
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F IGURE 2 Example of the (a) face-on (CdTe, CZT, and GaAs)
and (b) edge-on (Si with W) simulation geometries. X-ray photons
impinge in the direction (0, 0,−1).

design.The lateral spread of charge cloud across detec-
tor pixels was modeled with the standard deviation 𝜎

(Equation 1), which was derived at the 2D x–y plane
by collapsing 3D drift, diffusion, and repulsion process.
For each detector pixel, the shared fraction of energy
due to charge sharing was computed by integrating the
charge density computed using 𝜎 with the pixel bound-
aries as the limits of integration. If 𝜎 < < pixel pitch, the
probability of charge sharing beyond the neighboring
pixels would be negligible, limiting charge sharing across
a maximum of two pixels (along x-direction) for edge-
on and four pixels (along x and y directions) for face-on
PCDs.

The standard deviation (𝜎) of the 2D Gaussian charge
cloud was defined as

𝜎 =
√

2
kBTzd

qU
+
(

zdNq
10𝜋𝜀U

)
1√
5𝜎i

+ 𝜎i
2 (1)

where kB = Boltzmann’s constant, T = absolute temper-
ature, z = distance between interaction point and the
anode along the direction of electric field, d = detec-
tor thickness along the direction of electric field,
q = elementary charge, U = bias voltage, N = num-
ber of electron-hole pairs liberated in each interaction

(=Edep/ΔE), where Edep is energy deposited in each
interaction and ΔE is the energy required to liberate one
electron-hole pair), 𝜀 = permittivity (= 𝜀R × 𝜀0, where 𝜀R
is the relative permittivity of the semiconductor mate-
rial and 𝜀0 is the vacuum permittivity), and 𝜎i = initial
radius of the charge cloud.23 We also modeled the fluc-
tuations in e-h pairs generation (computing N) using the
Fano factor. In this way, the 𝜎 provides a spatial distribu-
tion of the charges inside the charge cloud, accounting
for charge diffusion and charge repulsion along the par-
allel and perpendicular directions of the electric field,
respectively. The values for the constants used in com-
puting for different PCD materials are tabulated in
Table 1.

The bias voltage (U) determines the electric field
strength, defined as the ratio of the applied bias voltage
to the detector thickness along the field direction. Elec-
tric field affects the drift velocity and mobility of charge
carriers,particularly electrons moving toward the anode.
In this study, bias voltages were not optimized, but were
chosen based on prior work to achieve a field strength
of approximately 6000–7000 V/cm.24,25 The bias volt-
ages are chosen to balance between charge collection
efficiency and breakdown or polarization risk, though a
comprehensive optimization was beyond the scope of
this study.

We designed a separate MC simulation in Geant4 to
compute the initial radius of the charge cloud (𝜎i).A point
electron source was placed at the center of a cubicle
semiconductor-material block to irradiate 105 electrons
at each energy (1 keV to 120 keV) in all directions. The
radius covering 95% of the total charge was considered
as the initial charge cloud radius, following the approach
used in prior work.10 In this way, charge sharing was
modeled by creating a charge cloud at each interac-
tion point and simulating initial charge cloud size,charge
repulsion, and charge diffusion.

2.1.3 Detector materials and geometries

The detector modeling approach was applied to four
pivotal PCD materials – Cadmium Telluride (CdTe;
Z = 48/52),Cadmium Zinc Telluride (CZT;Z = 48/30/52),
Silicon (Si; Z = 14), and Gallium Arsenide (GaAs;
Z = 31/33) using face-on and edge-on designs. For the
CdTe-,CZT-,and GaAs-PCDs,we used a face-on design
with a continuous array of pixels measuring 0.50 mm
× 0.60 mm and a thickness of 1.60 mm (Figure 2a).
For the Si-PCD, considering Silicon’s low-Z characteris-
tics, which entail lower absorption efficiency and higher
Compton scattering than high-Z materials, we used an
edge-on design and inserted a 0.02-mm Tungsten (W;
Z = 74) foil between consecutive Silicon wafers, leading
to an array of pixels measuring 0.50 mm × (0.50 + 0.02)
mm and a thickness of 60 mm (Figure 2b).The inclusion
of W in the Si-PCD design prevents the scattering of
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TABLE 1 Constants for various PCD materials used to compute σ.

CdTe CZT GaAs Si

kB 1.38×10−23 J/K

T 313.15 K

Q 1.60×10−19 C

U 1000 V 375 V

ΔE 4.4 eV 4.6 eV 4.2 eV 3.6 eV

Fano factor 0.12 0.14 0.12 0.11

𝜀0 8.85 ×10−12 CV−1 m−1

𝜀R 10.2 10 13.1 11.7

TABLE 2 DukeCounter CT scanner components.

Anode angle 8

Focal spot 1.0 mm × 1.0 mm

Number of channels (fan
angle)

1640

Number of rows (cone
angle)

128

Detector pixel size
(fan angle × cone angle)

0.50 mm × 0.60 mm (CdTe, CZT,
GaAs)
0.50 mm × 0.50 + 0.02 mm (Si +
W)

Source-to-isocenter
distance

575 mm

Source-to-detector distance 1104 mm (CdTe, CZT, GaAs)
957 mm (Si)

Projections per rotation 2000

x-ray photons across detector pixels in one dimension,
decreasing the probability of multiple counts from one
incident photon at the cost of the quantum efficiency of
the detector.9,26

The PCD geometries (Figure 2) depicted in this
study were implemented to cover a range of geome-
tries commonly proposed and utilized in various clinical
PCDs.8,26–30 Our objective, however, was not to repli-
cate any specific PCD design but showcase the generic
nature of our simulation framework. Our framework
can accommodate other PCD configurations, such as
an edge-on GaAs-based PCD utilizing a GaAs wafer
coupled with a chromium (Cr) foil.31,32 Utilizing MC simu-
lation and charge sharing model, we generated detector
responses for face-on CdTe-,CZT-,GaAs-,and edge-on
Si-based PCDs (Figure 2).

2.2 DukeCounter scanner components

A set of standardized CT scanner components (Table 2)
were defined to design virtual scanner models of CdTe,
CZT, GaAs, and Si PCD-CT, which we collectively call
the DukeCounter scanners. This allowed us to keep
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F IGURE 3 Energy spectrum (top) summed across all channels
and bowtie profile (bottom) summed across all energies from 1 to
120 keV.

a uniform set of scanner components for all PCD
simulations.

A 120 kV poly-energetic spectrum (Figure 3, top)
from a Tungsten anode target post 4-mm Aluminum
filter was estimated using an established toolkit.33

Similarly, an intensity profile across the fan angle
(Figure 3, bottom) was derived for a 40.75-degree fan
angle and an aluminum-based beam-shaping bowtie fil-
ter using a publicly available dataset, which reported
the thickness of aluminum across fan angle for a
“medium” bowtie design, representing a typical clinical
configuration.34 The modeled bowtie filter can intro-
duce beam-hardening effects in the resulting projection
images. DukeCounter CT detector pixels were assem-
bled into a cylindrical array without any dead space.The
beam collimation was set to 40 mm at the isocenter
for all DukeCounter scanners. An anti-scatter grid was
added to achieve a typical scatter-to-primary ratio of
0.08 to 0.10 for a 20-cm water phantom.35
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2.3 CT simulator

To efficiently generate realistic and scanner-specific
PCD-CT sinograms,a validated CT simulator (DukeSim)
was utilized.14,16 DukeSim calculates primary and scat-
ter signals using ray-tracing and Monte Carlo, respec-
tively. In this study, the detector responses for all
PCD designs and the scanner components of Duke-
Counter CT were incorporated into DukeSim. The
proposed framework can model spatio-energetic detec-
tor response across user-defined spatial extents (e.g.,
3 × 3, 5 × 5, 7 × 7) and varying numbers of energy
thresholds. To integrate with the current configuration
of the DukeSim simulator, detector responses were
extracted for 3 × 3-pixel arrays around the center pixel
and for two energy thresholds LT and HT (LT < HT)
for all PCDs, where LT and HT stand for low-threshold
and high-threshold, respectively. For CdTe-, CZT-, and
GaAs-based PCDs, LT and HT were set to 20 keV and
65 keV, respectively, while for the Si-PCD they were
set to 5 keV and 35 keV. The 3 × 3-pixel binning of
detector response has proved effective to adequately
represent the signal crosstalk for PCDs made from
high-Z materials.12 In contrast, for Si-based PCDs, the
use of high-Z W foils reduces some crosstalk along
the y-axis; however, due to Si low-Z characteristics,
crosstalk can still extend beyond a 3 × 3-pixel array.
To evaluate the impact of simulating 3 × 3-pixel array
for Si-based PCD, the spectral response and source-
spectrum-weighted modulation transfer function (MTF)
were measured for 3 × 3 and 5 × 5-pixel arrays, follow-
ing methods described in previous studies.12,36 Using a
3 × 3-pixel array instead of a 5 × 5 resulted in 5.9%
and 3.1% signal loss at the 5 keV and 35 keV thresh-
olds, respectively. Similarly, the 3 × 3 MTF was greater
than 5 × 5 MTF by 5.9% ± 2.0 and 2.9% ± 1.0 for
the same thresholds, indicating that the 5 × 5 array
captured increased spatial blurring in Si-based PCD
(Figure 4). These findings suggest that extending the
simulated array to a 5 × 5 configuration could reduce
signal loss in Si-PCD simulations;however, since the CT
simulator is limited to processing up to a 3 × 3-pixel
array, detector responses for the Si-based PCD were
also generated for a 3 × 3 configuration. Nonetheless,
importantly, the proposed framework is flexible and can
compute detector responses for pixel arrays of arbitrary
size.

DukeSim calculates the noise-free mean signal for
each detector element p across n energy thresholds,
ETk (k = 1, 2, 3, …, n) as

S(p)1×n =
∑

E

i,j =3∑
i,j =1

N(E)i,j × R(E, ETk)i,j, k = 1, 2, 3, … , n

(2)
where (i, j) is the pixel index within the 3×3 array with
center at (2, 2), N(E) ∈ R3×3 is the number of photons

at energy E incident on the 3×3 pixel array around the
center pixel p after attenuating through the phantom,
R(E, ETk) ∈ R3×3 is the detector response, that is, the
probability of a photon with energy E being recorded
in the 3×3 pixel array at an energy threshold ETk. The
correlated noisy signal for n energy thresholds is then
calculated using multivariate Gaussian random vari-
ables with mean S(p)1×n and covariance matrix C(p)n×n
computed as

C(p)n×n =
⎡⎢⎢⎣

Cov (p,ET1, ET1) … Cov (p,ET1, ETn)
… … …

Cov (p,ETn, ET1)… … Cov (p,ETn, ETn)

⎤⎥⎥⎦and

Cov
(
p,ETx,ETy

)
=

∑
E

i,j=3∑
i,j=1

N(E)i,j×Cov
(
E, ETx,ETy

)
i,j

,

x, y = 1, 2,… , n, (3)

where Cov(E, ETx, ETy) ∈ R3×3 is the spatio-energetic

covariance matrix.14

To generate realistic noisy sinogram data, the trans-
mitted photon counts for each detector pixel were
first multiplied by the mean spatio-energetic detector
response (Eq.2) to obtain the expected noise-free signal
across n energy thresholds. Then, correlated noise was
introduced by sampling from a multivariate Gaussian
distribution whose covariance matrix (Eq. 3) captured
both the spatial correlations among neighboring pixels
and spectral correlations among energy thresholds.This
approach ensured that the simulated data preserved
realistic mean signal behavior and noise correlations
across spatial and spectral domains. The noisy sino-
gram data were then logged with air normalization and
corrected for beam hardening using a polynomial fit
derived from polyenergetic and monoenergetic water
phantom images across various thicknesses.16 Scatter
from the object in the field of view was not corrected
but minimized using an anti-scatter grid as described in
Section B (Methods).

The integration of spatio-energetic detector
responses and CT scanner components into DukeSim
enable the simulation of virtual CdTe-, CZT-, GaAs-,
and Si-DukeCounter PCD-CT scanners and efficient
formation of PCD-CT sinograms from computational
phantoms.

2.4 Clinical validation

For validation purposes, DukeCounter was adapted to
model the scanner geometry of a clinical CdTe-based
PCD-CT (NAEOTOM Alpha, Siemens Healthineers). A
scanner-specific detector response was generated for
a 0.30-mm square pixel and integrated into DukeSim.
An ACR CT accreditation phantom was scanned and
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F IGURE 4 Spectral response (left) and source-spectrum-weighted MTF (right) for the simulated Si-based PCD, shown for a 3 × 3 and
5 × 5-pixel arrays at two thresholds – 5 and 35 keV. The spectral response was obtained by summing the mean detector response over the
desired spatial extent (3 × 3 or 5 × 5), while the MTF was computed based on methods presented in prior studies.12,36

simulated under the same settings at three dose lev-
els of 3.0, 6.0, and 12.0 mGy acquired with a tube
voltage of 120 kV, a beam collimation of 144 × 0.4
mm, a gantry rotation speed of 0.50 s per rotation, and
a pitch of 1.0. Both the acquired real and simulated
sinograms were reconstructed using a vendor-specific
reconstruction software (ReconCT version 15.055067.0,
Siemens Healthineers) with the same settings – Quan-
tum Iterative Reconstruction (QIR) algorithm of iterative
strength 3, Br40 kernel, 250 mm FOV, 512×512 matrix
size, and a 0.4 mm slice thickness – to acquire 20-
keV and 65-keV threshold images and 70-keV virtual
monoenergetic images (VMI). However, clinical CT sys-
tems often incorporate proprietary post-processing such
as scatter and beam-hardening corrections, which may
introduce differences between the simulated and real
CT images.

The modulation transfer function (MTF) for air and
bone inserts, and the normalized noise power spec-
trum (nNPS) were measured from 20-keV-threshold real
and simulated CT images. As noise magnitude and
CT number of air and polyethylene inserts are var-
ied across 20-keV- and 65-keV-threshold images and
70-keV-VMI images, noise magnitude and CT num-
ber were measured for all image types from both
real and simulated CT images. The spatial frequencies
at which the MTF dropped to 90%, 50%, 10% were
recorded as f90, f50, f 10, respectively. Similarly, the aver-
age frequency of the NPS was recorded as fav. These
scalar metrics were used to compare spatial resolution
and noise texture between the real and simulated CT
images.

2.5 Pilot virtual imaging
demonstrations

The utility of the proposed methodology was demon-
strated by characterizing DukeCounter scanners for
both task-generic and task-specific scenarios. For the
task-generic study, a computational model of an ACR
CT accreditation phantom was simulated with two
tube currents to simulate low- and routine-dose con-
ditions. One task-specific study was focused on quan-
tifying chronic bronchitis and emphysema in chronic
obstructive pulmonary disease (COPD) patients by
utilizing an anthropomorphic, computational, voxelized
human model with emphysema and bronchitis (COPD-
XCAT).37–39 Another study was focused on assessing
liver lesion detectability. Six hypoattenuating small liver
lesions of different sizes (0.4 cm to 1.5 cm) were
inserted in random locations within liver parenchyma of
an XCAT. These lesions were iodinated, simulating the
portal venous phase in a contrast-enhanced imaging
study.40

The computational ACR and two human models were
imaged using the CdTe-, CZT-, GaAs-, and Si-based
DukeCounter scanners with the acquisition settings tab-
ulated in Table 3 to generate two energy threshold
images – low-threshold (LT) and high-threshold (HT).LT
and HT were 20 and 65 keV for CdTe-, CZT-, and GaAs-
DukeCounter scanners, whereas 5 and 35 keV was
used for Si-DukeCounter, per operating expectations
of corresponding scanners. The resulting sinograms
were reconstructed using an open-source multi-channel
reconstruction (MCR) toolkit with reconstruction settings
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8 of 16 BHATTARAI ET AL.

TABLE 3 Image acquisition and reconstruction settings for the computational ACR phantom, COPD-XCAT, and XCAT with liver lesions.

ACR COPD-XCAT Liver lesion-XCAT

Acquisition settings Tube voltage 120 kV

Tube current 40 mA and 200 mA 320 mA 240 mA

Pitch 0.8

Gantry rotation speed 0.5 s

Reconstruction settings Image type LT and HT LT 70 keV –
mono-energetic

Recon algorithm Weighted-filtered back
projection (wFBP)

Recon kernel Hann (smooth) Ram-Lak (sharp) Hann (smooth)

Slice thickness 1 mm 1 mm 3 mm

Pixel size 0.41×0.41 mm2 0.41×0.41 mm2 0.44×0.44 mm2

tabulated in Table 3.41 Furthermore, 70-keV monoener-
getic images for all PCD-CT systems were generated
using a standard two-material decomposition.42 Cylin-
drical phantoms containing known iodine and calcium
concentrations were scanned at high dose with each
modeled DukeCounter system and corresponding two
energy thresholds to obtain calibration data, which were
then applied to reconstruct 70-keV monoenergetic CT
images.

From the ACR phantom images, the MTF for the air
insert, noise magnitude, and CT number of the bone
insert were measured from the LT and HT images.
From the COPD-XCAT images, Pi10 – a clinically sig-
nificant biomarker for bronchitis – was measured from
the ground-truth and LT images and the absolute dif-
ferences between these measurements were reported.
Pi10 represents the square root of the wall area around
an airway with a 10 mm perimeter.38,39 In addition,mean
absolute error (MAE) was calculated to assess the accu-
racy of density measurements for emphysema, defined
as the voxel-wise mean absolute difference between the
ground-truth and LT images.The ground-truth consisted
of cross-sectional images of the COPD-XCAT phantom
at 66 keV, the effective energy of the source spectrum.
For the XCAT with liver lesions, 70-keV mono-energetic
images were derived from the LT and HT images to
compute CNR for each lesion with liver as the back-
ground. Additionally, a detectability index was measured
for each of those lesions to assess the likelihood of its
detectability by a human reader.40,43

Task-independent detective quantum efficiencies
(DQEs) were computed for a 0.30 × 0.30 × 1.60
mm3 CdTe-PCD (configuration simulated for clinical
validation) using 20 and 65 keV thresholds, and for
a 0.50 × 0.50 × 60 mm3 Si-PCD using 5 and 35
keV thresholds, following the methodology defined in
prior studies.12,36,44 Transmitted spectra after attenu-
ation through water phantoms of various thicknesses
(20, 30, 40 cm) were used to measure the DQEs, con-
sistent with the approach adopted in those studies.
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F IGURE 5 Initial charge cloud radii for different PCD materials. It
was defined as the radius covering 95% of the total charge
generated by 105 electrons with energies ranging from 1 to 120 keV.
The y-axis is shown on a logarithmic scale.

This comparison corroborates the methodological con-
sistency and validity of our framework relative to prior
simulation-based studies.

3 RESULTS

3.1 Detector response

Figure 5 shows the radius of the spherical charge cloud
for each PCD material calculated using MC simula-
tion. The size of the initial charge cloud increased more
rapidly for Si (0.005–44.336 um) than for GaAs (0.002–
14.706 um),CdTe (0.002–10.522 um),or CZT (0.003 um
to 11.876 um) as the energy increased from 1 to 120 keV.

Figure 6 shows the mean counts for incident energies
of 1 – 120 keV across the 3 × 3-pixel neighborhood for
energy thresholds LT = 20 and HT = 65 keV for CdTe-,
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BHATTARAI ET AL. 9 of 16

F IGURE 6 Normalized mean counts for incident energies 1–120 keV across 3 × 3-pixel neighborhood. The row and column represent y-
and x-axes, respectively as described in Figure 2. Note that the y-axes’ values are different.

CZT-, GaAs-PCDs, and LT = 5 keV and HT = 35 keV
for Si-PCD designs modeled in this study normalized
with the number of incident photons, that is, 1 × 105.
The k-edges of Cadmium (Cd) and Tellurium (Te) are
visible in CdTe and CZT plots around 27 and 32 keV,
respectively. The k-edges of Silicon (Si), Zinc (Zn), Gal-
lium (Ga), and Arsenic (As) are not visible. Si has the
lowest magnitude of crosstalk in the neighboring pix-
els along y-axis, specifically in (2, 1) and (2, 3). At the
center pixel, CdTe, CZT, and GaAs show a peak in
counts that increases to a maximum before decreasing
monotonically at higher energies. In contrast, for Si at
LT = 5 keV, the counts approach a plateau at higher
energies and at HT = 35 keV, the counts decrease
monotonically until they plateau again at higher
energies.

3.2 Clinical validation

Figure 7 presents the image quality metrics mea-
sured from both real and simulated images across the
acquired three dose levels (3.0, 6.0, and 12.0 mGy). The

MTF and the nNPS were computed for 20-keV-threshold
image while noise magnitude and CT number were
computed for all three image types – 20-keV-threshold,
65-keV-threshold, and VMI-70 keV. For the air insert,
across all dose levels, the mean absolute differences
(MADs) in the f90, f50, and f10 were 0.015 mm−1 ± 0.004,
0.016 mm−1 ± 0.004, and 0.016 mm−1 ± 0.000, respec-
tively. Similarly, for the bone insert, these differences
were 0.017 mm−1 ± 0.002, 0.010 mm−1 ± 0.006, and
0.008 mm−1 ± 0.004. The fav measured from real and
simulated images were 0.271 mm−1 ± 0.003 and 0.272
mm−1 ± 0.000, respectively.

The relative MADs in noise magnitude measurements
for 3.0 mGy dose level were 3.91, 2.42, and 4.28%
for 20-keV-threshold,65-keV-threshold,and VMI-70 keV
images. The relative MADs were 0.75%, 1.47%, 0.80%
for 6.0 mGy, and 3.30%, 5.26%, 3.24% for 12.0 mGy,
respectively. The MADs in CT numbers of the air insert
were 0.307 HU ± 0.206, 1.078 HU ± 0.706, 1.086
HU ± 0.389 for 20-keV-threshold,65-keV-threshold,and
VMI-70keV images. For the polyethylene insert, the dif-
ferences were 2.264 HU ± 0.200,2.584 HU ± 0.628,and
0.640 HU ± 0.377, respectively.
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F IGURE 7 Real versus simulated quantitative assessments. MTF, averaged over all dose levels (3.0, 6.0, and 12.0 mGy), for air (top-left)
and bone (middle-left) inserts measured from 20-keV threshold images. Normalized NPS, averaged over all dose levels, for 20-keV threshold
images (bottom-left). For MTF and nNPS plots, the dotted lines represent the average value while the shaded regions represent the range
across all dose levels. Image noise (top-right) measured across all dose levels and image types (20-keV-threshold, 65-keV-threshold, and
70-keV-VMI). CT number of air (middle-right) and polyethylene (bottom-right) inserts measured across all conditions.

TABLE 4 Spatial resolution (f50 of MTF), noise magnitude, and CT number for bone insert measured from simulated ACR images across
two tube currents and two energy thresholds (Figure 8).

Tube
current

Energy
threshold f50 (mm−1) Noise Magnitude (HU) CT Number – Bone (HU)

CdTe CZT GaAs Si CdTe CZT GaAs Si CdTe CZT GaAs Si

40 mA LT 0.52 0.52 0.52 0.50 47.6 47.8 55.8 57.4 931.7 945.1 1033.5 927.2

HT 0.52 0.53 0.51 0.48 73.3 75.2 95.6 78.2 725.2 733.6 756.7 1049.1

200 mA LT 0.52 0.52 0.52 0.51 21.4 21.6 25.1 26.1 935.4 945.4 1039.3 933.3

HT 0.53 0.53 0.53 0.51 32.8 33.5 42.5 35.2 726.6 730.6 758.9 1055.4

3.3 Pilot virtual imaging

Figure 8 shows simulated CT images of the ACR phan-
tom, and Table 4 illustrates the IQ measurements from
those images across two energy thresholds (LT, HT) for
CdTe-, CZT-, GaAs-, and Si-DukeCounter scanners at
40 and 200 mA.The f50 of MTF were within ±0.05 mm−1

range for all DukeCounter scanners across all condi-
tions. The increase in image noise from LT to HT was
highest for GaAs at both 40 mA (39.8 HU) and 200 mA
(17.4 HU), while lowest for Si at both 40 mA (20.8 HU)
and 200 mA (9.1 HU).The difference in CT number mea-
surements for bone insert between LT and HT images at

40 mA were 206.5 HU, 211.5 HU, 276.8 HU,−121.9 HU,
and at 200 mA were 208.8 HU, 214.8 HU, 280.4 HU, and
−122.1 HU for CdTe-,CZT-,GaAs-,and Si-DukeCounter
systems, respectively.

Qualitatively, Figure 9 (left) shows that CT images
of the COPD-XCAT phantom appear consistent across
all DukeCounter systems. Quantitatively, Table 5 shows
that the absolute error in Pi10 measurement and MAE
for emphysema vary within ±0.17 mm and ± 5.4
HU, respectively, across all DukeCounter scanners. The
GaAs-DukeCounter showed the largest deviation in
Pi10 from the ground-truth (1.13 mm) and the high-
est MAE (200.2 HU) for emphysema, while the average
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BHATTARAI ET AL. 11 of 16

TABLE 5 Quantitative task-specific image quality measurements for COPD quantification and liver lesion detection. Absolute difference in
Pi10 measurements and mean absolute error (MAE) in emphysema density between ground-truth and simulated LT images of a COPD-XCAT
phantom. CNR and detectability index averaged over six liver lesions obtained from 70 keV mono-energetic CT images of an XCAT with
embedded liver lesions.

DukeCounter scanner CdTe CZT GaAs Si

COPD-
XCAT

Absolute difference in Pi10 (mm) 0.94 0.97 1.13 1.08

Emphysema MAE (HU) 195.8 196.2 200.2 194.8

Liver
lesion-
XCAT

CNR 1.76 ± 0.16 1.74 ± 0.12 1.43 ± 0.18 1.62 ± 0.28

Detectability index (d’) 4.03 ± 1.07 4.05 ± 1.04 3.10 ± 0.81 3.71 ± 0.99

F IGURE 8 Simulated images of an ACR phantom at 40 mA (top
row) and 200 mA (bottom row) across LT and HT thresholds for
DukeCounter scanners [W/L] = [400/100]. Note that (LT, HT) = (20, 65
keV) for CdTe-, CZT-, GaAs- and (5, 35 keV) for Si-DukeCounter
scanners.

deviations were 1.03 mm and 196.8 HU. However, the
maximum error observed for GaAs-DukeCounter were
not significantly different (p > 0.05) than the mean error
across all scanners.

Similarly, visually, Figure 9 (right) shows that lesion
detectability is consistent across the 70 keV mono-
energetic images for all DukeCounter scanners,with the
CZT-DukeCounter showing a slight advantage. Table 5
shows that CdTe and GaAs-DukeCounter demonstrated
the highest (1.76 ± 0.16) and lowest (1.43 ± 0.18)
CNR, while CZT and GaAs-DukeCounter demonstrated
the highest (4.05 ± 1.04) and lowest (3.10 ± 0.81)
detectability index for liver lesions. CdTe and CZT-
DukeCounter had similar performance for liver lesion
detectability where the average difference in d’measure-
ments for six lesions was 0.13 ± 0.11.

Task-independent detective quantum efficiency
(DQE) for the 0.30 × 0.30 × 1.60 mm3 CdTe-PCD

and 0.50 × 0.50 × 60 mm3 Si-PCD decreased with
increasing water thickness. At their respective Nyquist
frequencies, task-independent DQEs for the Si-PCD
were 0.239,0.237,and 0.236 for 20,30,and 40 cm water
thicknesses, respectively, while those for the CdTe-PCD
were 0.287, 0.279, and 0.271. These values are con-
sistent with prior studies from which the methodology
was adapted, where DQEs of approximately 0.25 for
Si and 0.30 for CdTe were estimated visually from the
published figures.12,36,44 Some differences in DQE are
likely due to differences in the shape of the source
spectrum and the specific energy thresholds used in
this study.

4 DISCUSSION

Photon-counting CT offers high-resolution spectral
imaging with promising clinical utilities over conventional
energy-integrating CT.For effective clinical adaptation of
existing and upcoming technologies, the performance of
PCD-CT systems must be evaluated, ideally both task-
generically to be applicable to the overall performance
across task, but also for targeted task-specific situa-
tions. Physical scanners, phantoms, and clinical trials
are often costly, time-inefficient, and pose ethical con-
cerns in radiation-based experimentation and lack of
ground-truth data.

An efficient approach to overcome these limita-
tions is to utilize a virtual (in-silico) imaging frame-
work acquainted with computational PCD-CT scanners
and phantom or human models. To generate real-
istic PCD-CT images, the signal generation process
of a photon-counting detector (PCD) must accurately
replicate real-world behavior. In our study, this objec-
tive was achieved by using Monte Carlo simulation to
generate the quantum efficiency of a PCD and blur-
ring it further in both spatial and spectral domains
with a charge sharing model. The versatility and
viability of this pipeline was demonstrated by sim-
ulating CdTe-, CZT-, GaAs-, and Si-based PCD-CT
scanners (named DukeCounter scanners) to gener-
ate images of an ACR phantom and human models
with COPD and liver lesions under varying acquisition
conditions.
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12 of 16 BHATTARAI ET AL.

F IGURE 9 Ground-truth (GT) and simulated CT images
obtained using DukeCounter scanners. Left: COPD-XCAT phantom
scanned at 320 mA, displayed with [W/L] = [−450/1000]. COPD CT
images are LT images, with zoomed-in views highlighting airway wall
thickness. Right: XCAT phantom with embedded liver lesions
scanned at 240 mA, displayed with [W/L] = [100/300]. Liver lesion CT
images are 70-keV mono-energetic images, with zoomed-in views
illustrating one of the six lesions.

Several cascaded, analytical, and Monte Carlo-based
models have been developed to model the detective
quantum efficiencies for PCDs.5–12 These studies do not
offer generalizability across PCD designs or validation
against physical measurements. While some validated
simulations of clinical and experimental prototype PCD-
CT scanners exist, they do not target cross-scanner

or cross-detector differences.14,15 There is a need for
a customizable, validated framework applicable across
the diversity of PCD-CT technologies. We aimed to cre-
ate such a framework including diverse detector material
properties and dimensions, and their corresponding
effect on CT images. This approach enables a direct
understanding of the impact of PCD characteristics on
resulting CT image quality. Furthermore, our framework
efficiently generates clinically relevant PCD-CT images
with realistic statistical properties through noise model-
ing,making it a valuable resource for studies that require
large datasets.

This framework was validated against the data from
a clinical CdTe-based PCD-CT scanner across var-
ious image acquisition settings. The simulated and
experimental MTF for air and bone inserts and their
corresponding cut-off frequencies (f90, f50, and f10)
showed close agreement, confirming the accuracy of
the modeled crosstalk processes (Compton and fluo-
rescence scatterings and charge sharing). Slight edge-
enhancement observed in the simulated CT images
from their MTFs can be attributed to the voxelized nature
of the computational phantom, which features sharp
boundaries and lacks sub-voxel variations. Additionally,
noise texture and noise magnitude were highly consis-
tent between real and simulated ACR images across all
image types, validating the accuracy of spatio-energetic
mean and covariance matrices. CT numbers for air and
polyethylene inserts were consistent across all image
types, with particularly close agreement in 70-keV-VMI
images. This highlights the accuracy of the simulation
for dual energy threshold systems, as VMI images are
extracted from the threshold data. Consistency of CT
numbers and image noise between real and simulated
data across two energy thresholds (20 and 65 keV) as
well as 70 keV monoenergetic images provided indi-
rect evidence of spectral consistency.Moreover,our prior
work had utilized similar photon transport and charge
sharing approach to model an experimental CdTe-based
detector (PixiRad-1/Pixie-III, 650 µm thickness, 62 × 62
µm pixel pitch).13 It showed strong agreement between
experimental and simulated spectra for 26, 33, 37, and
50 keV energies under various pixel summing and
inhibition modes, providing additional evidence in the
accuracy of our spectral response modeling.

While experimental validation was performed using a
clinical CdTe-based PCD-CT system, the modeling of
CZT-, GaAs-, and Si-based PCDs followed standard-
ized simulation protocols based on well-established,
material-specific physical principles.8,9,45 Validating a
physics-based simulation framework across many set-
tings is experimentally unattainable. The limited acces-
sibility of PCDs and vendor-controlled protocol settings
made comprehensive validation across all PCD mate-
rials, designs, and energy threshold settings infeasible.
As such, our study followed the same approach as
others to use one PCD material and configuration for
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BHATTARAI ET AL. 13 of 16

validation.9,46 The successful validation with a clinical
scanner provided confidence in both the physical accu-
racy and the customizable feature of the framework,
as DukeCounter was adapted to replicate a clinical
PCD-CT system for validation.

The initial charge cloud size increased with energy
for all materials, but more rapidly for Si compared to
the others (Figure 5). Our findings are consistent with
the Kanaya-Okayama radius, which predicts that the
maximum penetration distance of an electron is directly
proportional to its energy and inversely proportional to
the material’s effective Z and density.10 We computed
the initial charge cloud size using MC simulations rather
than analytical approximations to be consistent with
the MC-based modeling of photon transport and x-ray
crosstalk. The normalized counts for CdTe-, CZT-, and
GaAs-based PCDs exhibited nearly homogenous dis-
tribution around the central pixel, whereas in Si-based
PCD, the presence of Tungsten foils along y-axis was
evident by the lower counts in pixels (2, 1) and (2, 3)
as compared to (1, 2) and (3, 2). The drop in counts at
the center pixel from lower to higher energies was most
distinct for GaAs-PCD, attributable to its low-Z charac-
teristics. Despite of the low Z value of Si, the edge-on
design increased the attenuation,and the Tungsten foils
minimized the crosstalk in Si-PCD. Secondary peaks
corresponding to the k-edges of Cd and Te were visi-
ble in the low threshold (= 20 keV) plots of CdTe and
CZT. However, the k-edges of Si, Zn, Ga, and As fell
below 20 keV and were not observed. Both CdTe and
CZT demonstrated similar trends for LT and HT across
the 3 × 3-pixel neighborhood with counts increasing to
a peak and then decreasing monotonically at higher
energies due to the reduced attenuation; however, at
the higher energies, CdTe-PCD exhibited slightly higher
counts than CZT-PCD due to CZT’s comparatively lower
attenuation. The rise or plateauing of counts at higher
energies for Si, in contrast to other materials, is attributed
to the reduced scattering angle at higher energies as
predicted by the Klein-Nishina relationship for Compton
scattering. This smaller-angle, forward-directed scatter-
ing led an increased signal concentration within the
3 × 3-pixel neighborhood and along the z-axis (60 mm
thickness). For all PCDs and energy thresholds (LT and
HT),electronic noise in the modeling process resulted in
non-zero counts below the threshold energies.

For all the modeled DukeCounter scanners, the spa-
tial resolution and noise texture remained consistent
across tube currents and energy thresholds, indicating
greater sensitivity to reconstruction parameters than to
dose level or energy thresholds. Si-DukeCounter exhib-
ited the highest noise magnitude for the low threshold
images,despite the low threshold being defined as 5 keV
for Si-DukeCounter as compared to 20 keV for others.
This is because the counts at the center pixel around
the effective energy of the source spectrum are lower
for Si-PCD as shown in Figure 6. The HU of bone insert

decreased from LT to HT threshold images for the CdTe-
, CZT-, and GaAs-DukeCounter, while it increased for
the Si-DukeCounter under identical imaging conditions.
This behavior can be attributed to the attenuation of
bone, which decreases more rapidly than water with
increasing energy, and the count magnitudes for PCDs
at higher energies (Figure 6). For GaAs-PCD, the con-
tribution of higher energies to the low threshold counts
are lowest than for other PCDs. Similarly, for Si-PCD,
the contribution of higher energies to the high thresh-
old counts are lowest than for other PCDs. This explains
the increase in HU of bone from the low threshold to the
high threshold image for Si-DukeCounter, highlighting
the dependance of HU variations on the physical proper-
ties of the PCDs and energy thresholds. It is important to
note that the energy binning (or thresholding) approach
can vary among PCDs. For instance, a prototype deep
Si-PCD-CT scanner utilized eight energy bins for bet-
ter spectral separation and detection efficiency.47 In this
study, the two energy thresholds for Si-PCD, 5 keV and
35 keV, resulted in two energy bins – [5 keV to 120
keV] and [35 keV to 120 keV]. These bins are primarily
influenced by Compton scatter interactions and photo-
electric absorption events, respectively. Qualitatively, CT
images of the human models were similar across all
DukeCounter scanners as the images for a particular
study were acquired and reconstructed under the same
settings.Quantitatively,the slight lower task performance
for GaAs can be attributed to its image noise and lower
signal separability at 70 keV between two thresholds
(Figure 6) as the 70 keV mono-energetic images were
derived from low- and high-threshold images.

When proprietary details of PCD-CT scanners are
not available, the model can be adapted by tuning key
parameters such as pixel size, detector thickness, and
bias voltage, and validating its output against empirical
measurements from the target system. This approach
can replicate the system performance across diverse
conditions; however, certain proprietary elements may
subtly influence spectral or noise characteristics and
limit ultimate accuracy. In such cases, sensitivity analy-
ses can be performed to identify the scanner or detector
parameters that have the maximum impact on imag-
ing metrics and require tighter constraints, and the ones
that have negligible impact and can be approximated
more freely. This approach would make the model both
customizable and reliable by acknowledging the poten-
tial loss of fidelity when complete CT specifications are
unavailable.48

Pulse pileup was not modeled in this study as
its effects have not shown demonstrative impact in
clinically-relevant imaging conditions. The 75th per-
centile of Diagnostic Reference Level for chest-
abdomen-pelvis exams for 21–25 cm patients is 10 mGy
(CTDIvol).49 Our framework’s validation held true at a 12
mGy dose level across low and high energy-threshold
and virtual-monoenergetic images. That suggests that
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there was no significant impact of pulse pileup in a clini-
cal PCD-CT scanner. Furthermore, one study examined
the effects of pileup at very high, maximum achievable
exposure levels and found no evidence of pileup, pos-
sibly due to small pixel size, short deadtime, or built-in
pulse pileup correction mechanisms.3

This study had a few limitations. Firstly, while we
validated our simulation framework against a clinical
CdTe-based PCD-CT scanner, which provides confi-
dence in the approach, such validation was not possible
for other detector PCD-CTs due to the lack of experi-
mental data. Secondly, the comparisons that we offer
do not relate to any specific PCD-CT technology pro-
totyped or implemented as the specifications of such
technologies can vary from those modeled in this work.
Furthermore, unique challenges associated with indi-
vidual PCD technology were not modeled in this work.
For instance, charge trapping, and crystal impurities
and defects are more pronounced in CZT and GaAs-
based PCDs, which can impact their performance.50,51

Thirdly, based on our validation results across clinically
relevant dose levels and a prior study that demon-
strated no significant impact of pulse pileup at the
maximum achievable exposure level – both conducted
on a CdTe-based PCD-CT – we did not integrate a pulse
pileup model into our framework.3 This assumption
could extend to PCD-CT systems using other detector
materials, such as Si, GaAs, and CZT, which have lower
Zeff , higher charge carrier mobility, faster charge collec-
tion times, leading to reduced pulse pileup compared
to CdTe.9 Additionally, several pulse pileup correction
mechanisms are available, both pre- and post-readout,
to mitigate pileup effects.52–55 However, a comprehen-
sive study evaluating whether pulse pileup remains
negligible at clinical dose levels across various PCD-CT
systems would strengthen this assumption.

5 CONCLUSION

We developed and validated a customizable model to
simulate the signal generation process across different
PCD-CT scanners. CdTe-, CZT-, GaAs-, and Si-based
PCDs were designed, and their spatio-energetic detec-
tor responses were generated and integrated into a
virtual imaging framework along with standardized CT
specifications to create DukeCounter PCD-CT scan-
ners. To demonstrate the utility of this framework in
characterizing PCD-CT technologies, a computational
ACR phantom and anthropomorphic XCAT human mod-
els with COPD and liver lesions were scanned with
the DukeCounter scanners to measure task-generic
image quality metrics, COPD biomarkers, and lesion
detectability. This framework provides the flexibility to
customize PCD designs and evaluate their impact on
both task-generic and task-specific image quality.
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